Seven papers accepted at MICCAI 2024
-
Diffusion Models with Implicit Guidance for Medical Anomaly Detection
Cosmin I. Bercea, Benedikt Wiestler, Daniel Rueckert, and Julia A. Schnabel
(https://arxiv.org/abs/2403.08464) -
Physics-Informed Deep Learning for Motion-Corrected Reconstruction of Quantitative Brain MRI
Hannah Eichhorn, Veronika Spieker, Kerstin Hammernik, Elisa Saks, Kilian Weiss, Christine Preibisch, and Julia A. Schnabel
(https://arxiv.org/abs/2403.08298) -
Progressive Growing of Patch Size: Resource-Efficient Curriculum Learning for Dense Prediction Tasks
Stefan M. Fischer, Lina Felsner, Daniel M. Lang, Richard Osuala, Johannes Kiechle, Jan C. Peeken, Julia A. Schnabel -
Interpretable Representation Learning of Cardiac MRI via Attribute Regularization
Maxime Di Folco, Cosmin I. Bercea, Emily Chan, Julia A. Schnabel
(https://arxiv.org/abs/2406.08282) -
Towards Learning Contrast Kinetics with Multi-Condition Latent Diffusion Models
Richard Osuala, Daniel M. Lang, Preeti Verma, Smriti Joshi, Apostolia Tsirikoglou, Grzegorz Skorupko, Kaisar Kushibar, Lidia Garrucho, Walter H. L. Pinaya, Oliver Diaz, Julia Schnabel, and Karim Lekadir
(https://arxiv.org/abs/2403.13890) -
Data-Driven Tissue- and Subject-Specific Elastic Regularization for Medical Image Registration
Anna Reithmeir, Lina Felsner, Rickmer Braren, Julia A. Schnabel, Veronika A. Zimmer -
Self-Supervised k-Space Regularization for Motion-Resolved Abdominal MRI Using Neural Implicit k-Space Representation
Veronika Spieker, Hannah Eichhorn, Jonathan K. Stelter, Wenqi Huang, Rickmer F. Braren, Daniel Rückert, Francisco Sahli Costabal, Kerstin Hammernik, Claudia Prieto, Dimitrios C. Karampinos, Julia A. Schnabel
(https://arxiv.org/abs/2404.08350)