Computational Imaging and AI in Medicine
Computational Imaging and AI in Medicine
About Us
People
News
Publications
Teaching
Open Positions
Contact
Light
Dark
Automatic
Publications
Type
Conference paper
Journal article
Preprint
Date
2023
2022
Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review
Motion represents one of the major challenges in magnetic resonance imaging (MRI). Since the MR signal is acquired in frequency space, …
Veronika Spieker
,
Hannah Eichhorn
,
Kerstin Hammernik
,
Daniel Rueckert
,
Christine Preibisch
,
Dimitrios C. Karampinos
,
Julia A. Schnabel
PDF
Cite
DOI
What do we learn? Debunking the Myth of Unsupervised Outlier Detection
Even though auto-encoders (AEs) have the desirable property of learning compact representations without labels and have been widely …
Cosmin I. Bercea
,
Daniel Rueckert
,
Julia A. Schnabel
PDF
Cite
Project
Improved 3D tumour definition and quantification of uptake in simulated lung tumours using deep learning
Laura Dal Toso
,
Zacharias Chalampalakis
,
Irène Buvat
,
Claude Comtat
,
Gary Cook
,
Vicky Goh
,
Julia A. Schnabel
,
Paul K Marsden
Cite
AtrialJSQnet: A New framework for joint segmentation and quantification of left atrium and scars incorporating spatial and shape information
Lei Li
,
Veronika Zimmer
,
Julia A. Schnabel
,
Xiahai Zhuang
Cite
A Deep Learning-based Integrated Framework for Quality-aware Undersampled Cine Cardiac MRI Reconstruction and Analysis
Inês P Machado
,
Esther Puyol-Antón
,
Kerstin Hammernik
,
Gastao Cruz
,
Devran Ugurlu
,
Ihsane Olakorede
,
Ilkay Oksuz
,
Bram Ruijsink
,
Miguel Castelo-Branco
,
Alistair A Young
,
others
Cite
Cite
×