MSc Project:
Uncertainty-Guided Registration of Normal
Variability for Unsupervised Anomaly Detection

Abstract: Unsupervised anomaly detection methods aim to detect irregular and
rare data instances that deviate from the normal, expected distribution. Although
much work has been done on the use of auto-encoders (AE) to detect anomalies [1],
it has been shown that learning the healthy distribution is stil cumbersome, with AEs
being able to reconstruct some types of anomalies even better than samples from the
trained distribution [2,3]. Strategies to constrain the latent manifold of AE include
adversarial training [4, 5], or probabilistic modeling [6,7]. More recently, deformable
auto-encoders [8] have been introduced to learn perceptually healthy priors and adapt
their morphometry based on estimated dense deformation fields [9] to better match
the input. However, this method does not guarantee that only healthy tissues will be
deformed at inference time.

The objective of this project is to extend deformable auto-encoders with a localized,
uncertainty-guided regularizaton of the deformaiton fields to avoid the registration of
abnormal regions during inference. The prospective student will explore existing deep-
learning-based uncertainty estimation methods, and develop a novel regularization for
constrained registration to improve unsupervised anomaly detection.

Requirements:
e Prior experience and good understanding in machine learning and statistics.
e Very good programming skills in Python (and PyTorch).
e Interest in medical imaging.
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Cosmin Bercea (cosmin.bercea@tum.de)

Dr. Veronika Zimmer (veronika.zimmer@tum.de)

Prof. Julia Schnabel (julia.schnabel@helmholtz-muenchen.de)
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