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Abstract
Deep learning achieves good performance when training and test data share similar distribution
characteristics. However, for real-world scenarios including medical imaging and natural scenes,
due to significant domain shifts caused by diverse data characteristics and scanner settings, models
often fail to generalize to unseen domains. To address this at the model level, domain adapta-
tion [11, 12] and domain generalization [1, 9] have emerged as potential solutions, with domain
adaptation relying on access to target data to learn target representations and domain generalization
aiming to learn invariant representations and obtain robust models using only source domains. Re-
cently, a new paradigm, test-time adaptation, further optimizes the model during online inference
on the target domain to increase the performance [2, 13].

Despite advancements, existing adaptation methods struggle to address the unique challenges in
the target domain. Specifically, scenarios which arise due to class imbalance, category shifts within
the domains, reliance on unsupervised surrogate objectives, and non-i.i.d assumptions, that lead to
error accumulation. Moreover, due to the scarcity of large annotated datasets, this limits the ability
of the models to learn meaningful representations for transferring to the target domain [4]. Recent
works [6] indicate that existing methods do not consistently improve performance on multi-source
real-world scenarios such as medical imaging [5, 8, 10].

This Master’s thesis aims to propose domain generalization and adaptation techniques to ad-
dress these challenges. The research will focus on training models on multi-source data from
diverse source distributions such as different scanners, pathologies, and demographics. Next, it
will explore existing domain generalization algorithms, analyzing the role of entropy minimization
for optimizing model performance [13, 14] and feature alignment [15]. Finally, the work seeks to
introduce novel contributions through fundamental deep learning properties, aiming to enhance the
adaptability and robustness of deep learning models for varied environments [3, 7]. We aspire to
publish the research outcomes in a relevant academic venue.

Requirements
• Proficient in deep learning
• Interested in medical imaging and research
• Experience in practical deep learning frameworks such as PyTorch
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